@prefix this: <
https://w3id.org/np/RAQvZ04s6dpC3g0NwQ9CV3kEB7EVqcDvSUPQdjVnHmS8U
> .
@prefix sub: <
https://w3id.org/np/RAQvZ04s6dpC3g0NwQ9CV3kEB7EVqcDvSUPQdjVnHmS8U/
> .
@prefix np: <
http://www.nanopub.org/nschema#
> .
@prefix dct: <
http://purl.org/dc/terms/
> .
@prefix nt: <
https://w3id.org/np/o/ntemplate/
> .
@prefix npx: <
http://purl.org/nanopub/x/
> .
@prefix xsd: <
http://www.w3.org/2001/XMLSchema#
> .
@prefix rdfs: <
http://www.w3.org/2000/01/rdf-schema#
> .
@prefix orcid: <
https://orcid.org/
> .
@prefix prov: <
http://www.w3.org/ns/prov#
> .
@prefix foaf: <
http://xmlns.com/foaf/0.1/
> .
sub:Head
{
this:
np:hasAssertion
sub:assertion
;
np:hasProvenance
sub:provenance
;
np:hasPublicationInfo
sub:pubinfo
;
a
np:Nanopublication
.
}
sub:assertion
{
<
https://osf.io/92snx
>
dct:issued
"July 2025" ;
dct:license
<
http://purl.org/np/RAQ__sGdY_Qc7l1O_zmn4nr-pMBOxKU04Ur9s998rS6Fc#CC-BY-4.0
> ;
<
https://w3id.org/fdof/ontology#hasEncodingFormat
> <
https://www.iana.org/assignments/media-types/application/pdf
> ;
<
https://w3id.org/fdof/ontology#materializes
>
sub:STAYAHEAD_DA1
;
<
https://www.w3.org/ns/dcat#accessURL
> <
https://osf.io/download/92snx/
> .
sub:STAYAHEAD_DA1
dct:contributor
orcid:0000-0001-7871-2073
,
orcid:0000-0001-8888-635X
;
dct:creator
orcid:0009-0004-2188-0817
;
dct:hasVersion
"1.0.0" ;
dct:isPartOf
<
https://w3id.org/np/RAz72LNwv9hNpTiQICSUAbaMYnTXV0HmBsD31W1MtWoYY
> ;
dct:language
<
https://www.omg.org/spec/LCC/Languages/LaISO639-1-LanguageCodes/en
> ;
dct:publisher
<
https://ror.org/027bh9e22
> ;
dct:subject
<
http://aims.fao.org/aos/agrovoc/c_4318
> ;
a
<
https://w3id.org/fair/ff/terms/article
> , <
https://w3id.org/fdof/ontology#FAIRDigitalObject
> ;
rdfs:comment
"This article presents an extended dataset description and methodology behind a large number of theoretical and empirical SARS-CoV-2 spike receptor-binding domain (RBD) variants, developed under the STAYAHEAD project for pandemic preparedness. It integrates large-scale in silico structure predictions with empirical biophysical measurements." ;
rdfs:label
"Structure-Based Prediction of SARS-CoV-2 Variant Properties Using Machine Learning on Mutational Neighborhoods" ;
<
https://schema.org/funder
> <
https://ror.org/056cwr036
> ;
<
https://w3id.org/fdof/ontology#hasMetadata
>
this:
;
<
https://www.w3.org/ns/dcat#contactPoint
> "e.a.schultes@lacdr.leidenuniv.nl" ;
<
https://www.w3.org/ns/dcat#endDate
> "July 2025" ;
<
https://www.w3.org/ns/dcat#startDate
> "March 2023" .
}
sub:provenance
{
sub:assertion
prov:wasAttributedTo
orcid:0000-0001-8888-635X
.
}
sub:pubinfo
{
<
http://purl.org/np/RAQ__sGdY_Qc7l1O_zmn4nr-pMBOxKU04Ur9s998rS6Fc#CC-BY-4.0
>
nt:hasLabelFromApi
"CC BY 4.0 | Attribution 4.0 International - Using this licence you are free to share and adapt the resource but you must ..." .
orcid:0000-0001-8888-635X
foaf:name
"Erik Schultes" .
this:
dct:created
"2025-07-13T14:30:56.032Z"^^
xsd:dateTime
;
dct:creator
orcid:0000-0001-8888-635X
;
dct:license
<
https://creativecommons.org/licenses/by/4.0/
> ;
npx:introduces
sub:STAYAHEAD_DA1
;
npx:wasCreatedAt
<
https://nanodash.knowledgepixels.com/
> ;
nt:wasCreatedFromProvenanceTemplate
<
https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU
> ;
nt:wasCreatedFromPubinfoTemplate
<
https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw
> , <
https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI
> ;
nt:wasCreatedFromTemplate
<
https://w3id.org/np/RArM5GTwgxg9qslGX-XiQ-KTTUwdoM0KB1YqmT4GqTizA
> .
sub:sig
npx:hasAlgorithm
"RSA" ;
npx:hasPublicKey
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCK1HbLXqu6lKnelVTcHiTVw07+CR5R3LvTsWDcyRgnvE8vHmlcNjc/Yj9cbEIidzqLHS00/LYxPV8lsCqO4DnRETGuq/ompAGXWP/xTLClQBm1uRUYsLq/GAcu/TPsXaGMJBTiBiGByLE4eiDQucLkRjLmAfA7X4QIgl4fgK1udQIDAQAB" ;
npx:hasSignature
"a4TVK46ZbxE53wjH+OtNjsqJ9I98VbZlLk0z6CTtqd3MUVajVj8motLMHIgixYyNAq2TC6oAHLaOuIKnuyRYL+q7ycXGKxy2kU2RwyjuNEXMMf23gbgKR+GHf4aYci4qGfd/G6RURzn17fbuNrenFgVM4D0m+oY6HOnbcZeQ4Bk=" ;
npx:hasSignatureTarget
this:
;
npx:signedBy
orcid:0000-0001-8888-635X
.
}