http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#Head
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://www.nanopub.org/nschema#hasAssertion
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://www.nanopub.org/nschema#hasProvenance
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#provenance
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://www.nanopub.org/nschema#hasPublicationInfo
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#pubinfo
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.nanopub.org/nschema#Nanopublication
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_1
http://semanticscience.org/resource/SIO_000139
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_2
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_1
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://amigo.geneontology.org/amigo/term/GO:0003824
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_2
http://purl.obolibrary.org/obo/RO_0002204
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=4620
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_2
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI_36080
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_3
http://purl.obolibrary.org/obo/BFO_0000066
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_3
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://amigo.geneontology.org/amigo/term/GO:0006909
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_3
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.selventa.com/vocabulary/increases
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_3
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_1
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_3
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.w3.org/2000/01/rdf-schema#label
cat(p(HGNC:GSN)) -> bp(GO:phagocytosis)
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#provenance
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/description
Approximately 61,000 statements.
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/rights
Copyright (c) 2011-2012, Selventa. All rights reserved.
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/title
BEL Framework Large Corpus Document
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://purl.org/pav/authoredBy
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_5
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://purl.org/pav/version
1.4
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_4
http://www.w3.org/ns/prov#value
Surprisingly, despite the lack of severing activity, capG overexpression also increased fibroblast motility [42]. Gelsolin has also been shown to regulate hematopoietic stem cell motility. Lin-Sca+Kit+ and Lin-Sca+Kit-, are two hematopoietic stem cell populations which show different basal and induced motility capacity. Indeed, they exhibit differential cell motility in response to stromal derived factor 1 (SDF-1), a chemokine influencing cell motility through phosphatidylinositol signaling. Lin-Sca+Kit+ cells, which are more primitive than Lin-Sca+Kit- cells, exhibit a lower response in terms of cell motility, although the activation of the phosphatidylinositol pathway was activated at the same level in the two populations. Proteomics analysis documented a lower expression of gelsolin and adseverin in Lin-Sca+Kit+ than in Lin-Sca+Kit-, providing an explanation for this differential response to SDF-1 [43]. CapG, which lacks severing activity, has also been shown to be involved in regulation of cellular motility in fibroblastic cells [42]. More recently, we were able to demonstrate that capG is also an important regulator of motility function in endothelial cells [29]. Endothelial cells are able to discriminate between different combinations of mechanical forces. In vivo, this capability results in a focalization of vascular areas subjected to atherosclerotic plaque development [44-46]. Indeed, plaques develop at bifurcations and curvatures which are exposed to a particular pattern of blood flow, with a low mean shear stress value and cyclic reversal of flow direction, which is in contrast with the unidirectional pattern of flow characterizing vascular areas protected against plaque development. In response to a plaque-free hemodynamic environment, capG expression and consequently endothelial motility are increased [29], resulting in a faster wound healing process [47], as compared to endothelial cells exposed to plaque-prone conditions. In vivo evidence for gelsolin involvement in cell motility was provided by gelsolin null mice (Gsn-/-), in which motility of osteoclasts was decreased [48]. In these mice, osteoclasts were unable to form cell adhesion structures (podosomes), and therefore their basal as well as their osteopontin- induced motility was affected. Analysis of these mice identified an additional role of gelsolin in the regulation of neuronal growth, cone formation and retraction [49]. Neuronal growth cones are highly motile structures from which lamellipodia and filopodia form and retract. Formation of these structures is a Ca2+-controlled process dependent on actin cytoskeleton remodeling. In Gsn-/- mice, only retraction processes appeared to be delayed, as compared to wild-type mice, suggesting that retraction is solely dependent on the presence of gelsolin,
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_4
http://www.w3.org/ns/prov#wasQuotedFrom
http://www.ncbi.nlm.nih.gov/pubmed/15526166
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_5
http://www.w3.org/2000/01/rdf-schema#label
Selventa
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.w3.org/ns/prov#hadPrimarySource
http://www.ncbi.nlm.nih.gov/pubmed/15526166
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.w3.org/ns/prov#wasDerivedFrom
http://resource.belframework.org/belframework/1.0/knowledge/large_corpus.bel
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#assertion
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#_4
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk#pubinfo
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://purl.org/dc/terms/created
2014-07-03T14:30:29.414+02:00
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://purl.org/pav/createdBy
http://orcid.org/0000-0001-6818-334X
http://www.tkuhn.ch/bel2nanopub/RAC4ewxZWwDnmbve_XM3z7FoqLTX60G-nhS378AWro7hk
http://purl.org/pav/createdBy
http://orcid.org/0000-0002-1267-0234