http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#Head
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://www.nanopub.org/nschema#hasAssertion
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://www.nanopub.org/nschema#hasProvenance
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#provenance
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://www.nanopub.org/nschema#hasPublicationInfo
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#pubinfo
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.nanopub.org/nschema#Nanopublication
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_1
http://www.selventa.com/vocabulary/variantOf
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=6840
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_1
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.ebi.ac.uk/ontology-lookup/?termId=MOD:00000
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_1
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.ebi.ac.uk/ontology-lookup/?termId=MOD:00696
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_2
http://semanticscience.org/resource/SIO_000139
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_3
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_2
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://amigo.geneontology.org/amigo/term/GO:0016301
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_3
http://purl.obolibrary.org/obo/RO_0002204
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=6840
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_3
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI_36080
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://purl.obolibrary.org/obo/BFO_0000066
http://purl.obolibrary.org/obo/UBERON_0001133
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://purl.obolibrary.org/obo/BFO_0000066
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_2
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.selventa.com/vocabulary/directlyIncreases
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_1
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_4
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.w3.org/2000/01/rdf-schema#label
p(HGNC:MAP2K1,pmod(P,S)) => kin(p(HGNC:MAP2K1))
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#provenance
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/description
Approximately 61,000 statements.
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/rights
Copyright (c) 2011-2012, Selventa. All rights reserved.
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://purl.org/dc/elements/1.1/title
BEL Framework Large Corpus Document
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://purl.org/pav/authoredBy
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_6
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://purl.org/pav/version
20131211
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_5
http://www.w3.org/ns/prov#value
Despite remarkable progress in dissecting the signaling pathways that are crucial for the metabolic effects of insulin, the molecular basis for the specificity of its cellular actions is not fully understood. One clue might lie in the spatial and temporal aspects of signaling. Recent evidence suggests that signaling molecules and pathways are localized to discrete compartments in cells by specific protein interactions. Also, the rapid termination of tyrosine or lipid phosphorylation by phosphatases or serine kinases might tightly control the strength of a signaling pathway, thus determining its effect on growth, differentiation and metabolism. Insulin is the most potent anabolic hormone known, promoting the synthesis and storage of carbohydrates, lipids and proteins and inhibiting their degradation and release back into the circulation. Decreased secretion of insulin, coupled with resistance to its actions, results in type 2 diabetes, a devastating disease that is reaching epidemic proportions [1]. Even in the absence of diabetes, insulin resistance is often associated with central obesity, hypertension, polycystic ovarian syndrome, dyslipidemia and atherosclerosis. At the cellular level, insulin action is characterized by diverse effects, including changes in vesicle trafficking, stimulation of protein kinases and phosphatases, promotion of cellular growth and differentiation and activation or repression of transcription. This complexity suggests that insulin action must involve multiple signaling pathways that diverge at or near the activation of its tyrosine kinase receptor. In fact, it is likely that even individual effects of the hormone require multiple signaling inputs. Evidence is emerging that the coordination of these pathways might be governed by their intracellular compartmentalization or duration of action. Here, we consider how temporal and spatial aspects of signal transduction play a crucial role in determining the specificity of insulin action, focusing on signal initiation from the receptor that is spatially segregated into discrete domains of the plasma membrane, as well as the mechanisms that determine the duration of individual signaling pathways. Together, these factors help to differentiate insulin from other hormones that share some of the same overall signaling properties. Divergent signaling pathways are initiated by insulin receptor substrates. The insulin receptor is a tyrosine kinase that catalyzes the phosphorylation of several intracellular substrates, including the insulin receptor substrate (IRS) proteins [2], GAB-1 [3], Shc [4], APS [5], p60DOK [6], SIRPS [7] and c-Cbl [8] (Fig. 1). Each of these substrates recruits a distinct subset of signaling proteins containing Src homology 2 (SH2) domains, which interact specifically with sequences surrounding the phosphotyrosine residue. Moreover, each of these substrates can be confined to distinct locations in the cell by specific sequences that direct interactions with other proteins or lipids. Most attention in the field of insulin receptor substrates has focused on the IRS family of proteins. Mice lacking the IRS-1 protein are insulin resistant but do not develop overt diabetes [9,10]. By contrast, animals lacking IRS-2 exhibit both impaired glucose tolerance and diabetes [11], which appears to result from a defect in insulin secretion as well as insulin resistance, presumably owing to decreased b-cell proliferation in the pancreas in the face of increased demand for insulin. Despite the similarity in structure and function, the apparent differences in phenotype between IRS1 and IRS2 knockout mice underscore a specific signaling specificity that probably results from their tissue distribution, subcellular location, activation–inactivation kinetics and combinatorial interactions with downstream effectors [12]. The tyrosine phosphorylation of IRS family members generates docking sites for sev...
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_5
http://www.w3.org/ns/prov#wasQuotedFrom
http://www.ncbi.nlm.nih.gov/pubmed/11849969
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_6
http://www.w3.org/2000/01/rdf-schema#label
Selventa
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.w3.org/ns/prov#hadPrimarySource
http://www.ncbi.nlm.nih.gov/pubmed/11849969
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.w3.org/ns/prov#wasDerivedFrom
http://resource.belframework.org/belframework/20131211/knowledge/large_corpus.bel
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#assertion
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#_5
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM#pubinfo
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://purl.org/dc/terms/created
2014-07-03T14:31:46.996+02:00
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://purl.org/pav/createdBy
http://orcid.org/0000-0001-6818-334X
http://www.tkuhn.ch/bel2nanopub/RA5qIfI0yO3AmDOByX5xKCTyqQ5rfrEIBKChMT3Wk65WM
http://purl.org/pav/createdBy
http://orcid.org/0000-0002-1267-0234