. . . . . . . "[Further characterization revealed the following additional differences among these three factors: (i) XF1 and XF2 could be extracted from nuclei under conditions quite different from those required for extraction of the Ah receptor; (ii) XF1 and XF2 were present in the nuclei of untreated cells and did not respond to polycyclic compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-napthoflavone, while nuclear Ah receptor was undetectable in untreated cells and rapidly increased in response to TCDD; (iii) inhibition of protein synthesis did not affect the TCDD-induced appearance of the Ah receptor but substantially decreased the constitutive activities of XF1 and XF2, suggesting that the Ah receptor must be present in untreated cells in an inactive form that can be rapidly activated by polycyclic compounds, while the constitutive expression of XF1 and XF2 depends on the continued synthesis of a relatively unstable protein; (iv) the receptor-deficient and nuclear translocation-defective mutants of the hepatoma cell line Hepa1, which are known to lack nuclear Ah receptor, expressed normal levels of XF1 and XF2, suggesting that the former factor is genetically distinct from the latter two; and (v) a divalent metal ion, probably Zn2+, is known to be an essential cofactor for the Ah receptor but was not required for the DNA-binding activities of XF1 and XF2.]. Sentence from MEDLINE/PubMed, a database of the U.S. National Library of Medicine."@en . . . . . "2017-02-19"^^ . . "Gene-disease associations inferred from text-mining the literature."@en . "DisGeNET evidence - LITERATURE"@en . "2017-10-17T13:10:22+02:00"^^ . . . . . . . . . . . "v5.0.0.0" . "v5.0.0" .